Dataset¶
Contained within this file are experimental interfaces for working with the Synapse Python Client. Unless otherwise noted these interfaces are subject to change at any time. Use at your own risk.
API reference¶
synapseclient.models.Dataset
dataclass
¶
Bases: DatasetSynchronousProtocol
, AccessControllable
, ViewBase
, ViewStoreMixin
, DeleteMixin
, ColumnMixin
, GetMixin
, QueryMixin
, ViewUpdateMixin
, ViewSnapshotMixin
A Dataset
object represents the metadata of a Synapse Dataset.
https://rest-docs.synapse.org/rest/org/sagebionetworks/repo/model/table/Dataset.html
ATTRIBUTE | DESCRIPTION |
---|---|
id |
The unique immutable ID for this dataset. A new ID will be generated for new Datasets. Once issued, this ID is guaranteed to never change or be re-issued |
name |
The name of this dataset. Must be 256 characters or less. Names may only contain: letters, numbers, spaces, underscores, hyphens, periods, plus signs, apostrophes, and parentheses |
description |
The description of the dataset. Must be 1000 characters or less. |
etag |
Synapse employs an Optimistic Concurrency Control (OCC) scheme to handle concurrent updates. Since the E-Tag changes every time an entity is updated it is used to detect when a client's current representation of an entity is out-of-date. |
created_on |
The date this dataset was created. |
modified_on |
The date this dataset was last modified. In YYYY-MM-DD-Thh:mm:ss.sssZ format |
created_by |
The ID of the user that created this dataset. |
modified_by |
The ID of the user that last modified this dataset. |
parent_id |
The ID of the Entity that is the parent of this dataset. |
columns |
The columns of this dataset. This is an ordered dictionary where the key is the
name of the column and the value is the Column object. When creating a new instance
of a Dataset object you may pass any of the following types as the
The order of the columns will be the order they are stored in Synapse. If you need
to reorder the columns the recommended approach is to use the You may modify the attributes of the Column object to change the column type, name, or other attributes. For example, suppose you'd like to change a column from a INTEGER to a DOUBLE. You can do so by changing the column type attribute of the Column object. The next time you store the dataset the column will be updated in Synapse with the new type.
Note that the keys in this dictionary should match the column names as they are in Synapse. However, know that the name attribute of the Column object is used for all interactions with the Synapse API. The OrderedDict key is purely for the usage of this interface. For example, if you wish to rename a column you may do so by changing the name attribute of the Column object. The key in the OrderedDict does not need to be changed. The next time you store the dataset the column will be updated in Synapse with the new name and the key in the OrderedDict will be updated.
TYPE:
|
version_number |
The version number issued to this version on the object. |
version_label |
The version label for this dataset. |
version_comment |
The version comment for this dataset. |
is_latest_version |
If this is the latest version of the object. |
is_search_enabled |
When creating or updating a dataset or view specifies if full text search should be enabled. Note that enabling full text search might slow down the indexing of the dataset or view. |
items |
The flat list of file entity references that define this dataset. This is effectively |
size |
The cumulative size, in bytes, of all items (files) in the dataset. This is only correct after the dataset has been stored or newly read from Synapse. |
checksum |
The checksum is computed over a sorted concatenation of the checksums of all items in the dataset. This is only correct after the dataset has been stored or newly read from Synapse. |
count |
The number of items/files in the dataset. This is only correct after the dataset has been stored or newly read from Synapse. |
activity |
The Activity model represents the main record of Provenance in Synapse. It is analogous to the Activity defined in the W3C Specification on Provenance. |
annotations |
Additional metadata associated with the dataset. The key is the name of your desired annotations. The value is an object containing a list of values (use empty list to represent no values for key) and the value type associated with all values in the list.
TYPE:
|
include_default_columns |
When creating a dataset or view, specifies if default columns should be included. Default columns are columns that are automatically added to the dataset or view. These columns are managed by Synapse and cannot be modified. If you attempt to create a column with the same name as a default column, you will receive a warning when you store the dataset.
The column you are overriding will not behave the same as a default column.
For example, suppose you create a column called |
Create a new dataset from a list of EntityRefs.
Dataset items consist of references to Synapse Files using an Entity Reference.
If you are adding items to a Dataset directly, you must provide them in the form of
an EntityRef
class instance.
from synapseclient import Synapse
from synapseclient.models import Dataset, EntityRef
syn = Synapse()
syn.login()
my_entity_refs = [EntityRef(id="syn1234"), EntityRef(id="syn1235"), EntityRef(id="syn1236")]
my_dataset = Dataset(parent_id="syn987", name="my-new-dataset", items=my_entity_refs)
my_dataset.store()
Add entities to an existing dataset.
Using add_item
, you can add Synapse entities that are Files, Folders, or EntityRefs that point to a Synapse entity.
If the entity is a Folder (or an EntityRef that points to a folder), all of the child Files
within the Folder will be added to the Dataset recursively.
from synapseclient import Synapse
from synapseclient.models import Dataset, File, Folder, EntityRef
syn = Synapse()
syn.login()
my_dataset = Dataset(id="syn1234").get()
# Add a file to the dataset
my_dataset.add_item(File(id="syn1235"))
# Add a folder to the dataset
# All child files are recursively added to the dataset
my_dataset.add_item(Folder(id="syn1236"))
# Add an entity reference to the dataset
my_dataset.add_item(EntityRef(id="syn1237", version=1))
my_dataset.store()
Remove entities from a dataset.
from synapseclient import Synapse
from synapseclient.models import Dataset, File, Folder, EntityRef
syn = Synapse()
syn.login()
my_dataset = Dataset(id="syn1234").get()
# Remove a file from the dataset
my_dataset.remove_item(File(id="syn1235"))
# Remove a folder from the dataset
# All child files are recursively removed from the dataset
my_dataset.remove_item(Folder(id="syn1236"))
# Remove an entity reference from the dataset
my_dataset.remove_item(EntityRef(id="syn1237", version=1))
my_dataset.store()
Query data from a dataset.
from synapseclient import Synapse
from synapseclient.models import Dataset
syn = Synapse()
syn.login()
my_dataset = Dataset(id="syn1234").get()
row = my_dataset.query(query="SELECT * FROM syn1234 WHERE id = 'syn1235'")
print(row)
Add a custom column to a dataset.
from synapseclient import Synapse
from synapseclient.models import Dataset, Column, ColumnType
syn = Synapse()
syn.login()
my_dataset = Dataset(id="syn1234").get()
my_dataset.add_column(Column(name="my_annotation", column_type=ColumnType.STRING))
my_dataset.store()
Update custom column values in a dataset.
from synapseclient import Synapse
from synapseclient.models import Dataset
syn = Synapse()
syn.login()
my_dataset = Dataset(id="syn1234").get()
# my_annotation must already exist in the dataset as a custom column
modified_data = pd.DataFrame(
{"id": ["syn1234"], "my_annotation": ["good data"]}
)
my_dataset.update_rows(values=modified_data, primary_keys=["id"], dry_run=False)
Save a snapshot of a dataset.
from synapseclient import Synapse
from synapseclient.models import Dataset
syn = Synapse()
syn.login()
my_dataset = Dataset(id="syn1234").get()
my_dataset.snapshot(comment="My first snapshot", label="My first snapshot")
Deleting a dataset
from synapseclient import Synapse
from synapseclient.models import Dataset
syn = Synapse()
syn.login()
Dataset(id="syn4567").delete()
Source code in synapseclient/models/dataset.py
380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 |
|
Functions¶
add_item
¶
Adds an item in the form of an EntityRef to the dataset. For Folders, children are added recursively. Effect is not seen until the dataset is stored.
PARAMETER | DESCRIPTION |
---|---|
item
|
Entity to add to the dataset. Must be an EntityRef, File, or Folder. |
synapse_client
|
If not passed in and caching was not disabled by
|
RAISES | DESCRIPTION |
---|---|
ValueError
|
If the item is not an EntityRef, File, or Folder |
Add a file to a dataset.
from synapseclient import Synapse
from synapseclient.models import Dataset, File
syn = Synapse()
syn.login()
my_dataset = Dataset(id="syn1234").get()
my_dataset.add_item(File(id="syn1235"))
my_dataset.store()
Add a folder to a dataset.
All child files are recursively added to the dataset.
from synapseclient import Synapse
from synapseclient.models import Dataset, Folder
syn = Synapse()
syn.login()
my_dataset = Dataset(id="syn1234").get()
my_dataset.add_item(Folder(id="syn1236"))
my_dataset.store()
Add an entity reference to a dataset.
from synapseclient import Synapse
from synapseclient.models import Dataset, EntityRef
syn = Synapse()
syn.login()
my_dataset = Dataset(id="syn1234").get()
my_dataset.add_item(EntityRef(id="syn1237", version=1))
my_dataset.store()
Source code in synapseclient/models/dataset.py
946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 |
|
remove_item
¶
remove_item(item: Union[EntityRef, File, Folder], *, synapse_client: Optional[Synapse] = None) -> None
Removes an item from the dataset. For Folders, all children of the folder are removed recursively. Effect is not seen until the dataset is stored.
PARAMETER | DESCRIPTION |
---|---|
item
|
The Synapse ID or Entity to remove from the dataset |
synapse_client
|
If not passed in and caching was not disabled by
|
RETURNS | DESCRIPTION |
---|---|
None
|
None |
RAISES | DESCRIPTION |
---|---|
ValueError
|
If the item is not a valid type |
Remove a file from a dataset.
from synapseclient import Synapse
from synapseclient.models import Dataset, File
syn = Synapse()
syn.login()
my_dataset = Dataset(id="syn1234").get()
my_dataset.remove_item(File(id="syn1235"))
my_dataset.store()
Remove a folder from a dataset.
All child files are recursively removed from the dataset.
from synapseclient import Synapse
from synapseclient.models import Dataset, Folder
syn = Synapse()
syn.login()
my_dataset = Dataset(id="syn1234").get()
my_dataset.remove_item(Folder(id="syn1236"))
my_dataset.store()
Remove an entity reference from a dataset.
from synapseclient import Synapse
from synapseclient.models import Dataset, EntityRef
syn = Synapse()
syn.login()
my_dataset = Dataset(id="syn1234").get()
my_dataset.remove_item(EntityRef(id="syn1237", version=1))
my_dataset.store()
Source code in synapseclient/models/dataset.py
1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 |
|
store
¶
store(dry_run: bool = False, *, job_timeout: int = 600, synapse_client: Optional[Synapse] = None) -> Self
Store information about a Dataset including the columns and annotations. Storing an update to the Datatset items will alter the rows present in the Dataset.
Datasets have default columns that are managed by Synapse. The default behavior of
this function is to include these default columns in the dataset when it is stored.
This means that with the default behavior, any columns that you have added to your
Dataset will be overwritten by the default columns if they have the same name. To
avoid this behavior, set the include_default_columns
attribute to False
.
Note the following behavior for the order of columns:
- If a column is added via the
add_column
method it will be added at the index you specify, or at the end of the columns list. - If column(s) are added during the construction of your Dataset instance, ie.
Dataset(columns=[Column(name="foo")])
, they will be added at the beginning of the columns list. - If you use the
store_rows
method and theschema_storage_strategy
is set toINFER_FROM_DATA
the columns will be added at the end of the columns list.
PARAMETER | DESCRIPTION |
---|---|
dry_run
|
If True, will not actually store the table but will log to the console what would have been stored.
TYPE:
|
job_timeout
|
The maximum amount of time to wait for a job to complete.
This is used when updating the table schema. If the timeout
is reached a
TYPE:
|
synapse_client
|
If not passed in and caching was not disabled by
|
RETURNS | DESCRIPTION |
---|---|
Self
|
The Dataset instance stored in synapse. |
Create a new dataset from a list of EntityRefs by storing it.
from synapseclient import Synapse
from synapseclient.models import Dataset, EntityRef
syn = Synapse()
syn.login()
my_entity_refs = [EntityRef(id="syn1234"), EntityRef(id="syn1235"), EntityRef(id="syn1236")]
my_dataset = Dataset(parent_id="syn987", name="my-new-dataset", items=my_entity_refs)
my_dataset.store()
Source code in synapseclient/models/dataset.py
67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 |
|
get
¶
get(include_columns: bool = True, include_activity: bool = False, *, synapse_client: Optional[Synapse] = None) -> Self
Get the metadata about the Dataset from synapse.
PARAMETER | DESCRIPTION |
---|---|
include_columns
|
If True, will include fully filled column objects in the
TYPE:
|
include_activity
|
If True the activity will be included in the Dataset if it exists. Defaults to False.
TYPE:
|
synapse_client
|
If not passed in and caching was not disabled by
|
RETURNS | DESCRIPTION |
---|---|
Self
|
The Dataset instance stored in synapse. |
Getting metadata about a Dataset using id
Get a Dataset by ID and print out the columns and activity. include_columns
defaults to True and include_activity
defaults to False. When you need to
update existing columns or activity these need to be set to True during the
get
call, then you'll make the changes, and finally call the
.store()
method.
from synapseclient import Synapse
from synapseclient.models import Dataset
syn = Synapse()
syn.login()
dataset = Dataset(id="syn4567").get(include_activity=True)
print(dataset)
# Columns are retrieved by default
print(dataset.columns)
print(dataset.activity)
Getting metadata about a Dataset using name and parent_id
Get a Dataset by name/parent_id and print out the columns and activity.
include_columns
defaults to True and include_activity
defaults to
False. When you need to update existing columns or activity these need to
be set to True during the get
call, then you'll make the changes,
and finally call the .store()
method.
from synapseclient import Synapse
from synapseclient.models import Dataset
syn = Synapse()
syn.login()
dataset = Dataset(name="my_dataset", parent_id="syn1234").get(include_columns=True, include_activity=True)
print(dataset)
print(dataset.columns)
print(dataset.activity)
Source code in synapseclient/models/dataset.py
124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 |
|
delete
¶
Delete the dataset from synapse. This is not version specific. If you'd like to delete a specific version of the dataset you must use the synapseclient.api.delete_entity function directly.
PARAMETER | DESCRIPTION |
---|---|
synapse_client
|
If not passed in and caching was not disabled by
|
RETURNS | DESCRIPTION |
---|---|
None
|
None |
Deleting a dataset
Deleting a dataset is only supported by the ID of the dataset.
from synapseclient import Synapse
from synapseclient.models import Dataset
syn = Synapse()
syn.login()
Dataset(id="syn4567").delete()
Source code in synapseclient/models/dataset.py
190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 |
|
update_rows
¶
update_rows(values: DATA_FRAME_TYPE, primary_keys: List[str], dry_run: bool = False, *, rows_per_query: int = 50000, update_size_bytes: int = 1.9 * MB, insert_size_bytes: int = 900 * MB, job_timeout: int = 600, wait_for_eventually_consistent_view: bool = False, wait_for_eventually_consistent_view_timeout: int = 600, synapse_client: Optional[Synapse] = None, **kwargs) -> None
Update the values of rows in the dataset. This method can only be used to update values in custom columns. Default columns cannot be updated, but may be used as primary keys.
Limitations:
- When updating many rows the requests to Synapse will be chunked into smaller requests. The limit is 2MB per request. This chunking will happen automatically and should not be a concern for most users. If you are having issues with the request being too large you may lower the number of rows you are trying to update.
- The
primary_keys
argument must contain at least one column. - The
primary_keys
argument cannot contain columns that are a LIST type. - The
primary_keys
argument cannot contain columns that are a JSON type. - The values used as the
primary_keys
must be unique in the table. If there are multiple rows with the same values in theprimary_keys
the behavior is that an exception will be raised. - The columns used in
primary_keys
cannot contain updated values. Since the values in these columns are used to determine if a row exists, they cannot be updated in the same transaction.
PARAMETER | DESCRIPTION |
---|---|
values
|
Supports storing data from the following sources:
TYPE:
|
primary_keys
|
The columns to use to determine if a row already exists. If a row exists with the same values in the columns specified in this list the row will be updated. If a row does not exist nothing will be done. |
dry_run
|
If set to True the data will not be updated in Synapse. A message
will be printed to the console with the number of rows that would have
been updated and inserted. If you would like to see the data that would
be updated and inserted you may set the
TYPE:
|
rows_per_query
|
The number of rows that will be queried from Synapse per request. Since we need to query for the data that is being updated this will determine the number of rows that are queried at a time. The default is 50,000 rows.
TYPE:
|
update_size_bytes
|
The maximum size of the request that will be sent to Synapse when updating rows of data. The default is 1.9MB.
TYPE:
|
insert_size_bytes
|
The maximum size of the request that will be sent to Synapse when inserting rows of data. The default is 900MB.
TYPE:
|
job_timeout
|
The maximum amount of time to wait for a job to complete.
This is used when inserting, and updating rows of data. Each individual
request to Synapse will be sent as an independent job. If the timeout
is reached a
TYPE:
|
wait_for_eventually_consistent_view
|
Only used if the table is a view. If set to True this will wait for the view to reflect any changes that you've made to the view. This is useful if you need to query the view after making changes to the data.
TYPE:
|
wait_for_eventually_consistent_view_timeout
|
The maximum amount of time to wait for a view to be eventually consistent. The default is 600 seconds.
TYPE:
|
synapse_client
|
If not passed in and caching was not disabled by
|
**kwargs
|
Additional arguments that are passed to the
DEFAULT:
|
Update custom column values in a dataset.
from synapseclient import Synapse
from synapseclient.models import Dataset
syn = Synapse()
syn.login()
my_dataset = Dataset(id="syn1234").get()
# my_annotation must already exist in the dataset as a custom column
modified_data = pd.DataFrame(
{"id": ["syn1234"], "my_annotation": ["good data"]}
)
my_dataset.update_rows(values=modified_data, primary_keys=["id"], dry_run=False)
Source code in synapseclient/models/dataset.py
218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 |
|
snapshot
¶
snapshot(*, comment: Optional[str] = None, label: Optional[str] = None, include_activity: bool = True, associate_activity_to_new_version: bool = True, synapse_client: Optional[Synapse] = None) -> TableUpdateTransaction
Creates a snapshot of the dataset. A snapshot is a saved, read-only version of the dataset at the time it was created. Dataset snapshots are created using the asyncronous job API.
PARAMETER | DESCRIPTION |
---|---|
comment
|
A unique comment to associate with the snapshot. |
label
|
A unique label to associate with the snapshot. |
include_activity
|
If True the activity will be included in snapshot if it
exists. In order to include the activity, the activity must have already
been stored in Synapse by using the
TYPE:
|
associate_activity_to_new_version
|
If True the activity will be associated with the new version of the dataset. If False the activity will not be associated with the new version of the dataset. Defaults to True.
TYPE:
|
synapse_client
|
If not passed in and caching was not disabled by
|
RETURNS | DESCRIPTION |
---|---|
TableUpdateTransaction
|
A |
Save a snapshot of a dataset.
from synapseclient import Synapse
from synapseclient.models import Dataset
syn = Synapse()
syn.login()
my_dataset = Dataset(id="syn1234").get()
my_dataset.snapshot(comment="My first snapshot", label="My first snapshot")
Source code in synapseclient/models/dataset.py
332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 |
|
query
staticmethod
¶
query(query: str, include_row_id_and_row_version: bool = True, convert_to_datetime: bool = False, download_location=None, quote_character='"', escape_character='\\', line_end=str(linesep), separator=',', header=True, *, synapse_client: Optional[Synapse] = None, **kwargs) -> Union[DATA_FRAME_TYPE, str]
Query for data on a table stored in Synapse. The results will always be
returned as a Pandas DataFrame unless you specify a download_location
in which
case the results will be downloaded to that location. There are a number of
arguments that you may pass to this function depending on if you are getting
the results back as a DataFrame or downloading the results to a file.
PARAMETER | DESCRIPTION |
---|---|
query
|
The query to run. The query must be valid syntax that Synapse can understand. See this document that describes the expected syntax of the query: https://rest-docs.synapse.org/rest/org/sagebionetworks/repo/web/controller/TableExamples.html
TYPE:
|
include_row_id_and_row_version
|
If True the
TYPE:
|
convert_to_datetime
|
(DataFrame only) If set to True, will convert all Synapse DATE columns from UNIX timestamp integers into UTC datetime objects
TYPE:
|
download_location
|
(CSV Only) If set to a path the results will be downloaded to that directory. The results will be downloaded as a CSV file. A path to the downloaded file will be returned instead of a DataFrame.
DEFAULT:
|
quote_character
|
(CSV Only) The character to use to quote fields. The default is a double quote.
DEFAULT:
|
escape_character
|
(CSV Only) The character to use to escape special characters. The default is a backslash.
DEFAULT:
|
line_end
|
(CSV Only) The character to use to end a line. The default is the system's line separator. |
separator
|
(CSV Only) The character to use to separate fields. The default is a comma.
DEFAULT:
|
header
|
(CSV Only) If set to True the first row will be used as the header row. The default is True.
DEFAULT:
|
**kwargs
|
(DataFrame only) Additional keyword arguments to pass to pandas.read_csv. See https://pandas.pydata.org/docs/reference/api/pandas.read_csv.html for complete list of supported arguments. This is exposed as internally the query downloads a CSV from Synapse and then loads it into a dataframe.
DEFAULT:
|
synapse_client
|
If not passed in and caching was not disabled by
|
RETURNS | DESCRIPTION |
---|---|
Union[DATA_FRAME_TYPE, str]
|
The results of the query as a Pandas DataFrame or a path to the downloaded |
Union[DATA_FRAME_TYPE, str]
|
query results if |
Querying for data
This example shows how you may query for data in a table and print out the results.
from synapseclient import Synapse
from synapseclient.models import query
syn = Synapse()
syn.login()
results = query(query="SELECT * FROM syn1234")
print(results)
Source code in synapseclient/models/mixins/table_components.py
2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 |
|
query_part_mask
staticmethod
¶
query_part_mask(query: str, part_mask: int, *, synapse_client: Optional[Synapse] = None) -> QueryResultBundle
Query for data on a table stored in Synapse. This is a more advanced use case
of the query
function that allows you to determine what addiitional metadata
about the table or query should also be returned. If you do not need this
additional information then you are better off using the query
function.
The query for this method uses this Rest API: https://rest-docs.synapse.org/rest/POST/entity/id/table/query/async/start.html
PARAMETER | DESCRIPTION |
---|---|
query
|
The query to run. The query must be valid syntax that Synapse can understand. See this document that describes the expected syntax of the query: https://rest-docs.synapse.org/rest/org/sagebionetworks/repo/web/controller/TableExamples.html
TYPE:
|
part_mask
|
The bitwise OR of the part mask values you want to return in the results. The following list of part masks are implemented to be returned in the results:
TYPE:
|
synapse_client
|
If not passed in and caching was not disabled by
|
RETURNS | DESCRIPTION |
---|---|
QueryResultBundle
|
The results of the query as a Pandas DataFrame. |
Querying for data with a part mask
This example shows how to use the bitwise OR
of Python to combine the
part mask values and then use that to query for data in a table and print
out the results.
In this case we are getting the results of the query, the count of rows, and the last updated on date of the table.
from synapseclient import Synapse
from synapseclient.models import query_part_mask
syn = Synapse()
syn.login()
QUERY_RESULTS = 0x1
QUERY_COUNT = 0x2
LAST_UPDATED_ON = 0x80
# Combine the part mask values using bitwise OR
part_mask = QUERY_RESULTS | QUERY_COUNT | LAST_UPDATED_ON
result = query_part_mask(query="SELECT * FROM syn1234", part_mask=part_mask)
print(result)
Source code in synapseclient/models/mixins/table_components.py
2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 |
|
add_column
¶
Add column(s) to the table. Note that this does not store the column(s) in
Synapse. You must call the .store()
function on this table class instance to
store the column(s) in Synapse. This is a convenience function to eliminate
the need to manually add the column(s) to the dictionary.
This function will add an item to the .columns
attribute of this class
instance. .columns
is a dictionary where the key is the name of the column
and the value is the Column object.
PARAMETER | DESCRIPTION |
---|---|
column
|
The column(s) to add, may be a single Column object or a list of Column objects. |
index
|
The index to insert the column at. If not passed in the column will be added to the end of the list.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None
|
None |
Adding a single column
This example shows how you may add a single column to a table and then store the change back in Synapse.
from synapseclient import Synapse
from synapseclient.models import Column, ColumnType, Table
syn = Synapse()
syn.login()
table = Table(
id="syn1234"
).get(include_columns=True)
table.add_column(
Column(name="my_column", column_type=ColumnType.STRING)
)
table.store()
Adding multiple columns
This example shows how you may add multiple columns to a table and then store the change back in Synapse.
from synapseclient import Synapse
from synapseclient.models import Column, ColumnType, Table
syn = Synapse()
syn.login()
table = Table(
id="syn1234"
).get(include_columns=True)
table.add_column([
Column(name="my_column", column_type=ColumnType.STRING),
Column(name="my_column2", column_type=ColumnType.INTEGER),
])
table.store()
Adding a column at a specific index
This example shows how you may add a column at a specific index to a table and then store the change back in Synapse. If the index is out of bounds the column will be added to the end of the list.
from synapseclient import Synapse
from synapseclient.models import Column, ColumnType, Table
syn = Synapse()
syn.login()
table = Table(
id="syn1234"
).get(include_columns=True)
table.add_column(
Column(name="my_column", column_type=ColumnType.STRING),
# Add the column at the beginning of the list
index=0
)
table.store()
Adding a single column (async)
This example shows how you may add a single column to a table and then store the change back in Synapse.
import asyncio
from synapseclient import Synapse
from synapseclient.models import Column, ColumnType, Table
syn = Synapse()
syn.login()
async def main():
table = await Table(
id="syn1234"
).get_async(include_columns=True)
table.add_column(
Column(name="my_column", column_type=ColumnType.STRING)
)
await table.store_async()
asyncio.run(main())
Adding multiple columns (async)
This example shows how you may add multiple columns to a table and then store the change back in Synapse.
import asyncio
from synapseclient import Synapse
from synapseclient.models import Column, ColumnType, Table
syn = Synapse()
syn.login()
async def main():
table = await Table(
id="syn1234"
).get_async(include_columns=True)
table.add_column([
Column(name="my_column", column_type=ColumnType.STRING),
Column(name="my_column2", column_type=ColumnType.INTEGER),
])
await table.store_async()
asyncio.run(main())
Adding a column at a specific index (async)
This example shows how you may add a column at a specific index to a table and then store the change back in Synapse. If the index is out of bounds the column will be added to the end of the list.
import asyncio
from synapseclient import Synapse
from synapseclient.models import Column, ColumnType, Table
syn = Synapse()
syn.login()
async def main():
table = await Table(
id="syn1234"
).get_async(include_columns=True)
table.add_column(
Column(name="my_column", column_type=ColumnType.STRING),
# Add the column at the beginning of the list
index=0
)
await table.store_async()
asyncio.run(main())
Source code in synapseclient/models/mixins/table_components.py
848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 |
|
delete_column
¶
delete_column(name: str) -> None
Mark a column for deletion. Note that this does not delete the column from
Synapse. You must call the .store()
function on this table class instance to
delete the column from Synapse. This is a convenience function to eliminate
the need to manually delete the column from the dictionary and add it to the
._columns_to_delete
attribute.
PARAMETER | DESCRIPTION |
---|---|
name
|
The name of the column to delete.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None
|
None |
Deleting a column
This example shows how you may delete a column from a table and then store the change back in Synapse.
from synapseclient import Synapse
from synapseclient.models import Table
syn = Synapse()
syn.login()
table = Table(
id="syn1234"
).get(include_columns=True)
table.delete_column(name="my_column")
table.store()
Deleting a column (async)
This example shows how you may delete a column from a table and then store the change back in Synapse.
import asyncio
from synapseclient import Synapse
from synapseclient.models import Table
syn = Synapse()
syn.login()
async def main():
table = await Table(
id="syn1234"
).get_async(include_columns=True)
table.delete_column(name="my_column")
table.store_async()
asyncio.run(main())
Source code in synapseclient/models/mixins/table_components.py
776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 |
|
reorder_column
¶
Reorder a column in the table. Note that this does not store the column in
Synapse. You must call the .store()
function on this table class instance to
store the column in Synapse. This is a convenience function to eliminate
the need to manually reorder the .columns
attribute dictionary.
You must ensure that the index is within the bounds of the number of columns in the table. If you pass in an index that is out of bounds the column will be added to the end of the list.
PARAMETER | DESCRIPTION |
---|---|
name
|
The name of the column to reorder.
TYPE:
|
index
|
The index to move the column to starting with 0.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None
|
None |
Reordering a column
This example shows how you may reorder a column in a table and then store the change back in Synapse.
from synapseclient import Synapse
from synapseclient.models import Column, ColumnType, Table
syn = Synapse()
syn.login()
table = Table(
id="syn1234"
).get(include_columns=True)
# Move the column to the beginning of the list
table.reorder_column(name="my_column", index=0)
table.store()
Reordering a column (async)
This example shows how you may reorder a column in a table and then store the change back in Synapse.
import asyncio
from synapseclient import Synapse
from synapseclient.models import Column, ColumnType, Table
syn = Synapse()
syn.login()
async def main():
table = await Table(
id="syn1234"
).get_async(include_columns=True)
# Move the column to the beginning of the list
table.reorder_column(name="my_column", index=0)
table.store_async()
asyncio.run(main())
Source code in synapseclient/models/mixins/table_components.py
1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 |
|
get_permissions
¶
get_permissions(*, synapse_client: Optional[Synapse] = None) -> Permissions
Get the permissions that the caller has on an Entity.
PARAMETER | DESCRIPTION |
---|---|
synapse_client
|
If not passed in and caching was not disabled by
|
RETURNS | DESCRIPTION |
---|---|
Permissions
|
A Permissions object |
Using this function:
Getting permissions for a Synapse Entity
from synapseclient import Synapse
from synapseclient.models import File
syn = Synapse()
syn.login()
permissions = File(id="syn123").get_permissions()
Getting access types list from the Permissions object
permissions.access_types
Source code in synapseclient/models/protocols/access_control_protocol.py
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 |
|
get_acl
¶
Get the ACL that a user or group has on an Entity.
PARAMETER | DESCRIPTION |
---|---|
principal_id
|
Identifier of a user or group (defaults to PUBLIC users)
TYPE:
|
synapse_client
|
If not passed in and caching was not disabled by
|
RETURNS | DESCRIPTION |
---|---|
List[str]
|
An array containing some combination of ['READ', 'UPDATE', 'CREATE', 'DELETE', 'DOWNLOAD', 'MODERATE', 'CHANGE_PERMISSIONS', 'CHANGE_SETTINGS'] or an empty array |
Source code in synapseclient/models/protocols/access_control_protocol.py
57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 |
|
set_permissions
¶
set_permissions(principal_id: int = None, access_type: List[str] = None, modify_benefactor: bool = False, warn_if_inherits: bool = True, overwrite: bool = True, *, synapse_client: Optional[Synapse] = None) -> Dict[str, Union[str, list]]
Sets permission that a user or group has on an Entity. An Entity may have its own ACL or inherit its ACL from a benefactor.
PARAMETER | DESCRIPTION |
---|---|
principal_id
|
Identifier of a user or group.
TYPE:
|
access_type
|
Type of permission to be granted. One or more of CREATE, READ, DOWNLOAD, UPDATE, DELETE, CHANGE_PERMISSIONS. Defaults to ['READ', 'DOWNLOAD'] |
modify_benefactor
|
Set as True when modifying a benefactor's ACL. The term 'benefactor' is used to indicate which Entity an Entity inherits its ACL from. For example, a newly created Project will be its own benefactor, while a new FileEntity's benefactor will start off as its containing Project. If the entity already has local sharing settings the benefactor would be itself. It may also be the immediate parent, somewhere in the parent tree, or the project itself.
TYPE:
|
warn_if_inherits
|
When
TYPE:
|
overwrite
|
By default this function overwrites existing permissions for the specified user. Set this flag to False to add new permissions non-destructively.
TYPE:
|
synapse_client
|
If not passed in and caching was not disabled by
|
RETURNS | DESCRIPTION |
---|---|
Dict[str, Union[str, list]]
|
An Access Control List object |
Setting permissions
Grant all registered users download access
from synapseclient import Synapse
from synapseclient.models import File
syn = Synapse()
syn.login()
File(id="syn123").set_permissions(principal_id=273948, access_type=['READ','DOWNLOAD'])
Grant the public view access
from synapseclient import Synapse
from synapseclient.models import File
syn = Synapse()
syn.login()
File(id="syn123").set_permissions(principal_id=273949, access_type=['READ'])
Source code in synapseclient/models/protocols/access_control_protocol.py
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 |
|
synapseclient.models.EntityRef
dataclass
¶
Represents a reference to the id and version of an entity to be used in Dataset
and
DatasetCollection
objects.
ATTRIBUTE | DESCRIPTION |
---|---|
id |
The Synapse ID of the entity.
TYPE:
|
version |
Indicates a specific version of the entity.
TYPE:
|
Source code in synapseclient/models/dataset.py
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 |
|
Attributes¶
Functions¶
to_synapse_request
¶
to_synapse_request()
Converts the attributes of an EntityRef instance to a request expected of the Synapse REST API.
Source code in synapseclient/models/dataset.py
54 55 56 57 58 59 60 61 |
|